Fertigation in High Value Tuber Crops - A Review

S. K. Jata, M. Nedunchezhiyan, Tapas Ranjan Sahoo and Viswanath Sahoo

ABSTRACT:

Tropical tuber crops play a significant role in the food and nutritional security to the human being. Tuber crops are classified as the third most important food crop for man after cereals and grain legumes. The major tropical tuber crops include cassava, elephant foot yam, sweet potato, yams and aroids. Sound water management has the potential to improve fertilizer/nutrient use efficiency. The introduction of well-tested, efficient fertilizer application through irrigation water or “fertigation” techniques could help turn vast areas of arid and semi-arid land in many parts of the world into farmland, as well as preventing water from being wasted in conventional irrigation systems. Drip irrigation has the greatest potential for the efficient use of water and fertilizers. The limited area of wetting under trickle-irrigation reduces the active root zone and also the foraging area of plants to draw water and nutrients from the soil. For minimizing the cost of irrigation and fertilizers, adoption of drip irrigation with fertigation is essential which will maximize the nutrient uptake, while using minimum amount of water and fertilizer. Fertigation gives advantages such as higher use efficiency of water and fertilizer, minimum losses of N due to leaching, supplying nutrients directly to root zone in available forms, control of nutrient concentration in soil solution and saving in application cost. Thus, fertigation becomes prerogative for increasing the yield of most of the crops under drip irrigation. In this paper, the literatures pertaining to the different aspects of fertigation are reviewed.

Introduction

India has the largest irrigation network in the world; its irrigation efficiency has not been more than 40%. Bringing more area under irrigation will largely depend upon efficient use of water. In this context, micro-irrigation has most significant role to achieve not only higher productivity and water use efficiency but also to have sustainability with economic use and productivity. It is the process wherein fertilizer is applied through an efficient irrigation system like drip. In fertigation Nutrient use efficiency could be as high as 90% compared to 40 - 60 % in conventional methods. The amount of fertilizer lost through leaching can be as low as 10% in fertigation where as it is 50 % in the traditional system. Adoption of micro-irrigation systems may help to increase the irrigated area, productivity of crops and water use efficiency (Sivanappan, 1985). Drip irrigation has proved its superiority over other methods owing to direct application of water in the root zone. Indiscriminate use of water through conventional irrigation system with only 60 % application efficiency is causing serious threat to available ground water resources. Drip irrigation can play a vital role in maximizing water use efficiency. Low nitrogen use efficiency in...
conventional method of irrigations also a major reason for low productivity of crops. Drip irrigation is at present economically feasible in high value crops. The use efficiency of these key inputs is currently very low in India leading to a lot of problems such as low crop productivity, degradation of soil health and increased environmental pollution apart from the wastage of substantial quantity of these costly and scarce inputs, increasing the efficiency of water and fertilizer can itself go a long way in realizing the growing demand for food and other plant products consequent to rapidly escalating population (Koo, 1981). The shrinking land: man and water: man ratios, increasing fertilizer prices, haunting energy crisis, wide spread pollution and fast degradation of natural resource further emphasis the need for improved water and fertilizer use efficiency (Dass, 1985). Drip fertigation optimize the use of water and fertilizer enabling to harness high crop yield, simultaneously ensuring a healthy soil and environment. The drip fertigation technology encompasses the application of solid or liquid mineral fertilizers through drip irrigation systems thus supplying a nutrient containing irrigation water to crops. Crop growths and yields under drip irrigation can be lower than those achieved under conventional irrigation methods if fertilizer placement is not modified to meet the needs of drip irrigated crops (Miller et al., 1976). Fertigation can be affected by using single or multiple nutrient fertilizers in their solid or liquid form. Some of the desirable characteristics of the fertilizer material for use in fertigation are full solubility, quick dissolution in water, fine grained product, high nutrient content in the saturated solution, compatibility with other fertilizers, absence of chemical interaction with irrigation water and minimum content of conditioning agents. Fertilizer applied to the soil have to be close the water source (emitter) in order to be used effectively by the crops. This implies the use of banded fertilizer application or the addition of fertilizer nutrient to the irrigation water.

Scope of fertigation in tuber crop

Fertigation permits application of a nutrient directly at the site of a high concentration of active roots and as needed by the crop. Scheduling fertilizer applications on the basis of need offers the possibility of reducing nutrient element losses associated with conventional application. Methods that depend on the soil as a reservoir of nutrients thereby increasing nutrient use efficiency. Fertilizer savings through fertigation can be to the tune of 25 - 50 % (Haynes, 1985). Under drip irrigation only a portion of the soil volume around each plant is wetted and thus traditional methods of fertilizer application is ineffective. The limited root zone and the reduced amount of mineralisation are the main reasons for the reduced nutrient availability to the plants with normal method of fertilizer application under drip irrigation (Magen, 1995). Fertigation is application of water soluble solids/liquid fertilizers through the drip irrigation on weekly/ monthly basis so as to reach each and every plant regularly and uniformly. It is the most effective and convenient means of maintaining optimum fertility level and water supply according to the specific requirement (Shirgure et al., 2000). Fertilizers and pesticides applied through a drip irrigation system can improve efficiency, save labour and increase flexibility in scheduling of applications to fit crop needs (Rolston et al., 1979). However, all chemicals must meet the following criteria for the successful maintenance of the drip irrigation system (Bucks and Nakayama, 1980). They must avoid corrosion or clogging of any component of the system, be safe for field use, not decrease crop yield, be soluble in water and not react with salt or other chemicals in the irrigation waters. A
correct rate and concentration of fertilizer is desired in fertigation system to avoid over fertilization and achieve the best results. It is to be specifically worked out for different cropping situations. Concentration of 100 mg/liter needs of most crops can be met with irrigation water.

Osmotic potential of soil solutions in fertigation

Optimization of levels of nutrient application through drip irrigation is closely related to osmotic potential usually expressed as electrical conductivity (EC) generated by the salts in the root medium solution. Increasing osmotic potential has a negative effect on plant growth and yield. Among the several N fertilizers given through irrigation water, only urea did not increase appreciably the EC of the soil solution. A nutrient concentration in irrigation water generated an EC of 1.8 d Sm⁻¹ after fruit set (Hagin *et al.*, 1990).

Frequency of fertigation

Fertigation of nutrients with very great dilution in each irrigation increased the fertilizer use efficiency far beyond the previously possible level (Menzel and Obe, 1990). The time of K application had less effect on elephant foot yam yield than the time of N application when both were applied through drip irrigation (Dangler and Locascio, 1990). However, since a higher N supply is known to encourage vegetative growth but stimulate the production of poor quality tuber, the N concentration in the fertilizer solution can be increased at vegetative stages of growth and restricted during the period of maturity (Levin *et al.*, 1980). Multiple applications of N fertilizers through drip irrigation improve the efficiency of fertilizer uptake by tuber crop like elephant foot yam over a single injection (Miller *et al.*, 1981). No difference in yield of strawbarriers was recorded when N and K were applied either daily or at weekly intervals with the drip irrigation (Locascio *et al.*, 1977).

Fertilization of nitrogen

Nitrogen is the most commonly deficient and often applied through drip irrigation. Generally all the nitrogen fertilizers are suitable for drip fertigation since they cause little clogging and precipitation problems except NH₄SO₄ which may cause precipitation of CaSO₄ in hard calcium rich water. N source selection should be based on its possible reactions with the irrigation water and the soil. Prolonged use of NH₄ containing fertilizers through drip system can have detrimental effects on soil fertility in the wetted soil volume. This is because nitrification of the applied NH₄ soil acidification. Injection of anhydrous ammonia or aqua ammonia will cause the pH of the irrigation water to raise with the possibility those insoluble salts of Ca and Mg would precipitate. Urea is well suited for injection through drip irrigation since it is highly soluble and dissolves in non-ionic form and does not react with the substances in the water. Nitrate salts are characteristically soluble and are well suited for use in drip irrigation (Haynes, 1985). The optimum concentration of N for yam and elephant foot yam to be applied through trickle irrigation was found to be 240 mg/liter on a coarse textured soil (Yosef *et al.*, 1980) and 180 mg/liter on a sandy loam soil (Papadopoulous, 1987).

The initial distribution of N added to the soil from trickle emitters is likely to differ markedly depending upon the source of N applied. Nitrification is generally rather rapid in most agricultural soils. However, if the soil is kept relatively wet below the emitter, nitrification process requires oxygen. During irrigation, NH₄ concentration rose from 7.1 to 13.5 ppm in the
surface 6 cm depth of soil extending up to a distance varying from 30 to 65 cm from the outlet. Ammonium concentration decreased rapidly as the soil dried out and 8 hours after the irrigation. It had fallen from 13.5 to 8.5 ppm. As there was no change in the N03 concentration in this region during the 8 hour period, the NH4 was being immobilized rather than nitrified (Bacon and Davey, 1982). During a fertigation cycle, applied NH4 was concentrated in the surface 10 cm of soil immediately below the emitter and little lateral movement occurred. Urea is relatively mobile in soils and it is not strongly absorbed by soil colloids. It tends to be more evenly distributed within the wetted profile than dose applied. Fertigated urea and nitrate were more evenly distributed down the soil profile below the emitter and had moved laterally in the profile to 15 cm radius from the emitter (Haynes, 1990)., nitrogen use efficiency was increased by approximately two fold when the fertilizer N was injected into the drip irrigation network. The highly mobile N03 ion moves with the wetting front of the irrigation application and tends to accumulate at the periphery of the wetted soil volume and at the soil surface midway between emitter. The bulk of any form of N applied to the soil is likely to eventually be transformed to N03-N (Haynes, 1985). Drip irrigation levels did not influence availability of soluble nutrients at the later stage of application of fertilizer as soluble nutrients are easily leached out by drip irrigation. Soil N changes with the frequency of irrigation and water application rate (Goldberg et al., 1971).

Fertigation of phosphorus

It has not been generally recommended for application in drip irrigation system because of its tendency to cause clogging and its limited movement in the soil. If irrigation water is high in Ca and Mg, precipitates of insoluble calcium and magnesium phosphates may result from the application of inorganic phosphates (Bucks et al., 1982). But the addition of H3PO4 to the irrigation water maintained a low pH and prevented the precipitation of insoluble salts, thus allowing the introduction of P through drip irrigation systems. The recommended P concentration in irrigation water of glass house grown tomato was 1.0 m mol P/litre (Sonneveld and Wees, 1988). The resulting P concentration in the root environment was 0.5 mol/litre indicating considerable precipitation of phosphates. The P2O5 concentration in the standard nutrient solution for tomatoes should be raised from 1.0 to 1.25 mm with intended concentration in the root environment should be raised from 0.5 to 0.7 mm (Voogt and Sonneveld, 1989).

The extent of movement of P in the soil from the emitter depends upon the P adsorption capacity of the soil. However, the distance of P movement was found to be proportional to the application rate since movement resulted from saturation of adsorption sites on the soil near the point of application and subsequently mass flow with the soil water. P was delivered to greater soil volume when applied as H3P04 acid through a drip irrigation system than triple super phosphate applied as a soil amendment beneath each emitter (Neill et al., 1979). Drip irrigation caused both horizontal and vertical movement of native soil P near the outlet and P fertilizer applied 50 - 80 cm away from the outlet, remained near the soil surface and above the root zone (Bacon and Davey, 1982). Phosphors when applied as urea phosphate moved in a calcareous loam soil to a depth of 30 cm. In tomato, considerable movement of P throughout the soil profile was possibly because of slower precipitation of calcium phosphate due to the lower pH of the irrigation water, possible presence of Mg and HC03 in
solution and predominant move of fertilizer solutions through soil microspores. Placement of small quantities of super phosphate near the trickle outlet is a satisfactory alternative to broadcasting (Bacon and Davey, 1989).

Fertigation of Potassium

Application of potassium fertilizers does not cause any precipitation as salts except in the case of KzSO4 with irrigation water containing high amount of calcium. Common K sources such as potassium sulphate, potassium chloride and potassium nitrate are readily soluble in water. These fertilizers move freely into the soil and some of the K ions are exchanged on the clay complex and are not readily leached away. Recommendations on rates of K application through drip irrigation for tomato go up to 350 mg K/litre (Sonneveld and Wees, 1988). Fertigation of K did not increase fruit production of peaches when initial soil K level was high (Bussi et al., 1991).

Potassium is less mobile than nitrate but distribution in the wetted volume may be more uniform due to interaction with binding sites (Kafkafi and Yosef, 1980). There was some movement observed after the K ions became concentrated in the soil near the emitter (Uriu et al., 1977). Like NH4, the K ion is adsorbed on the cation exchange sites on soil colloids so that the extent of movement is dependent upon the CEC of the soil and the rate at which K is applied. Most workers have detected considerable lateral and downward movement of trickle applied K (Goode et al., 1978; Keng et al., 1979; Kafkafi and Yosef, 1980). Lesser movement of K was attributed after fertigation due to large plant uptake of K (Goyal et al. 1989).

Micronutrients

Micronutrients such as iron, manganese, zinc and copper can be applied through irrigation water as chelated form (Fe EDTA) without causing any precipitation problem.

Yield of crops

Successful cropping of Elephant foot yam was obtained with drip irrigation using fertigation on a highly calcareous desert soil where control of nutrient level was more difficult than sand dunes (Kafkafi and Yosef, 1980). A linear relationship existed between total N uptake by elephant foot yam and fertigation of N up to 200 kg/ha (Stark et al., 1983). When NPK were applied through drip irrigation, higher elephant foot yam yield was obtained with 75 % of the recommended dose (Singh et al., 1989). Marketable yield of tomato was higher when 50 % N was fertigated than fertigation of N at 75 to 100 % level (Dangler and Locascio, 1990). Application of N through fertigation performed better than soil application alone. When N was fertigated N saving to the tune of 20 % was observed compared to soil application alone in tomato (Haroon, 1991). Drip irrigation with 100 % N and K applications gave higher tuber yield of elephant foot yam (Salvodar et al., 1997). Highest yields of high quality tuber of elephant foot yam were obtained with 50 % trickle applied N + K grown on polyethylene mulched beds (James et al., 1990). In elephant foot yam, fertigation 1/2 N and K and black poly mulch was found to be good with respect to yield and growth parameters like yield of 63.3 t/ha, fruit weight (64.5 g), number of fr Uits/plant (62), yield/plant (4 kg), number of branches/plant (7.7) and number of clusters/plant (12.3). The fruit dry matter content (41.2 %) was highest in the treatment 1/2 N and K fertigation through multi K + black ploy mulch (Prabhakar et al., 2001). Drip fertigation of 80 % recommended dose with water soluble fertilizer registered 22.3 and 31.0 % higher dry fruit yield over drip and
furrow irrigation methods even with same level and method of normal fertilizer application (Muralidhar et al., 1999). In tomato, there was considerable saving of fertilizers and water through fertigation using water soluble fertilizers (Jeyabal et al., 2000). Application of 50% N and full dose of P and K as basal and remaining 50 kg N through fertigation at 15 days interval throughout the crop period significantly improved the yield and quality of tomato grown on coirpith mixed potting media (Baskar, 1996). Compared to fertilization, fertilizer saving under fertigation was found to the extent of 50 Qlb with yield increase in tomato (Goyal et al., 1985). Similarly utilization of N by tomato was more when applied through the drip irrigation system than when banded either in furrow irrigation or drip irrigation (Miller et al., 1976; Miller et al., 1981).

Fertigation at 300 kg N/ha provided the highest tuber yield (38.3 q/ha) (Table 2). Drip fertigation at 180 kg N/ha recorded tuber yield (30.6 q/ha) at par with furrow irrigation fertilized at 300 kg N/ha (30.5 q/ha) which indicate 40% nitrogen saving in elephant foot yam (Patel and Patel 2001). Potato crop fertilized by high frequency irrigation of fertigation techniques absorbed more N than those conventionally fertilized (Phene et al., 1979). In potato, four split nitrogen fertigation under drip irrigation resulted in higher WUE over furrow irrigation method (Keshavaiah and Kumareshwamy, 1993). High frequency application of N with drip irrigation improved the efficiency of fertilizer use by potato more than two fold over conventional fertilizer application method (Rollston et al., 1979).

Fertigation with 80% of recommended dose of N gave higher TSS (7.68° brix), juice (49.08%), acidity (4.10) and fruit/tree (1493) than other levels of N fertigation to acid lime (Shirgure et al., 1999). Scheduling irrigation through drip once in 2 days at 100% of surface method of irrigation registered highest tuber yield of 58.7 t/ha which was significantly superior over surface irrigation scheduled at 0.6 IW/CPE ratio. However, fertigation of N at different levels failed to reveal marked variation on tuber yield of tapioca; the three levels of N tried produced comparable yields both under surface and drip irrigations. Higher rhizome yield arrowroot was recorded under drip irrigation at 80% of surface irrigation; however the yield was comparable with 60 and 40% of surface irrigation through drip which were significantly higher than 0.9 IW/CPE ratio. The three levels of N (100, 75 and 50% of recommended level) @ 125, 93.75 and 62.5 kg/ha produced comparable yields which indicated saving of 50% N ever recommended level when applied as fertigation in Arrowroot. In Coconut, fertigation with water soluble fertilizer at 80% recommended fertilizer improved trunk girth (6%), number of fronds (18%), fruit bunches (21.5%), nut yield and economized 20% fertilizer over control. In oil palm, fertigation with water soluble fertilizer (80
% improved the trunk girth (18 %), number of fronds (22 %) and yield (83 %) with a saving in fertilizer and water by 20 and 33 % over control (Gnanamurthy and Manickasundram, 2001). In paprika, fertigation with urea and multi K at 100 % recommended NK level gave higher dry fruit yield of 63.8 q ha⁻¹ which was 31.5 % higher over yield obtained with soil application of 100 % NK and surface irrigation (48.5 q ha⁻¹ (Jeyabal et al., 2000). Nutrient uptake the highest uptake of N was observed with more frequent drip irrigation in tomato (Yosef, 1977). In tomato, N uptake increases with increase in N application rate up to the optimum level (Yosef and Sagive, 1982). Significantly higher total N uptake by different parts of tomato plant was recorded under drip irrigation over conventional irrigation (Balfna et al., 1993). The N application rate was having linear relationship with N uptake in drip irrigation system. Nitrogen uptake was markedly influenced by frequency as well as time of irrigation (Stark et al., 1983). In trickle irrigated tomato, P uptake was not influenced by quantity of water applied (Yosef, 1977). The highest P uptake was recorded in most drip irrigation with more quantum of water (Yosef et al., 1980). A significantly higher P content was measured in trickle irrigated tomato over surface irrigation method (Rauchkolb et al., 1978). Goyal et al. (1984) found significant influence of trickle irrigation on K uptake in tomato. On contrary no significant difference was observed in K uptake with the water application rate through trickle irrigation in tomato (Kafkafi and Yosef, 1980). Drip fertigation of 80 kg recommended dose with water soluble fertilizer registered 29.2, 27.2 and 27.0 q ha⁻¹ higher N, P₂O₅ and K₂O uptake over soil application of fertilizer with drip irrigation and 40.8, 44.8 and 43.7 % higher N, P₂O₅ and K₂O uptake respectively over furrow irrigation (Haynes, 1988). Soil properties High concentrations of mineral nutrients applied by drip irrigation may lead to localized salinity problems or changes in soil pH in the wetted zone. Changes in pH might not only affect root uptake but could significantly influence the solubility of mineral elements within the irrigated soil volume possibly leading to deficiencies or toxic levels of certain elements. Fertigation with ammonium nitrate @ 33 kg ha⁻¹ on 11 occasions over a 2 year period caused a decrease in soil pH from 6.2 to 3.7 in the zone wetted by emitters (Edwards et al., 1982). Decrease in soil pH was greater in fertigation of N as urea than broadcast application whereas level of soluble salts below the trickle emitters was increased due to the fertigation of N as compared to broadcast application but within non-injurious level to plants (Haynes, 1988). Generally, increased level of N through fertigation resulted in increased soluble salt concentration in soil below the drip emitters (Papadopoulous, 1987). Fertigation with both ammonium sulphate and urea caused acidification in the wetted soil volume. Acidification was confined to the surface 20 cm of soil in the ammonium sulphate while it was up to a depth of 40 cm in urea due to its greater mobility. Increasing the drip discharge rates reduced the downward movement of urea and encouraged its lateral spread in the wetted soil. As a consequence, acidification was confined to the surface 20 cm soil (Haynes, 1990).

Soil moisture availability

Slow and frequent watering eliminated wide fluctuation of soil moisture under drip irrigation resulting in better growth and yield (Sivanappan, 1998). The soil water content a portion of plant root zone remains fairly constant because irrigation water can be applied slowly and frequently at a pre determined rate (Bucks et al., 1984). Water content in drip irrigation is always nearer to field capacity in root zone but
unsaturated hence gravitational force is minimum (Black 1976). Water retention curve was constant which shade constant water retention in soil under drip irrigation (Yosef and Shelkoslaml, 1976). According to Hendnck and Wierenga, (1990) variability in Soil water tension was related to the method of Irrigation (trickle and flood).

Water use efficiency

The highest WUE of 362 l/kg/ha cm under drip irrigation whereas it was 118.8 kg/ha cm in furrow irrigation in brinjal (Sivanappanand Padmakumari, 1980). In okra, Kadam et al. (1993) also recorded higher WUE (374kg/ha cm) under drip irrigation than furrow irrigation (214 kg/ha cm). Decreasing the fertilizer level by 20 % than the recommended level especially under fertigation conditions may not affect the yield level in chilli because of improved fertilizer use efficiency. Between furrow and drip irrigations, drip irrigation produced significantly higher dry chilli yield with 42 % higher water use efficiency over furrow method (Veeranna et al., 2001).

Non-uniform nutrient distribution

The effect of uneven nutrient distribution under drip fertigation viz., accumulation of P close to the emitter (Goldberg et al., 1971) and rapid movement of NO3 to the periphery of wetted volume is not great as plant can adopt to this spatial variability of nutrients through the rate of nutrient uptake’ per unit weight or length of roots in the nutrient enriched area (Dasberg et al., 1981). Localized root proliferation can occur in the zones of soil high in nutrients (Haynes, 1985). Under arid soil conditions, the whole root system may develop in the trickle irrigated zone since there is little water available beyond the soil volume (Yosef, 1977; Levin et al., 1979; Levin et al., 1980).

Economics

Drip irrigation to tuber crop not only offers water economy, but also provides a high yield of the produce which in turn gives higher net return than traditional furrow irrigation (Chauvan and Shukla, 1990). The B: C (benefit: cost) ratio of drip irrigation system for tuber crop was found to be 4.5 while it was 2.96 for conventional method (Gutal et al., 1989). The B: C ratio was much higher in tuber crop under drip irrigation when the water so saved was assumed to be utilized to cover additional area of the same crop than conventional irrigation (Hugar, 1996). Higher discounted B: C ratio of 5.89 was obtained in tuber crop due to drip irrigation than surface irrigation (2.44). The higher profit/rupee invested was realized with 150 g of N and K fertigation in 1:2 ratio (Chandrakumar et al., 2001).

Table 1. Solubility of different fertilizers

<table>
<thead>
<tr>
<th>Fertilizers</th>
<th>Solubility (g/liters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea</td>
<td>1100</td>
</tr>
<tr>
<td>Ammonium nitrate</td>
<td>1190</td>
</tr>
<tr>
<td>Ammonium sulphate</td>
<td>710 -</td>
</tr>
<tr>
<td>Potassium nitrate</td>
<td>130 - 320</td>
</tr>
<tr>
<td>Potassium chloride</td>
<td>280 - 340</td>
</tr>
<tr>
<td>Potassium sulphate</td>
<td>70 - 110</td>
</tr>
<tr>
<td>Phosphate</td>
<td>580 - 690</td>
</tr>
<tr>
<td>Urea phosphate</td>
<td>350 - 500</td>
</tr>
<tr>
<td>Magnesium sulphate</td>
<td>710</td>
</tr>
</tbody>
</table>

Gnanamurthy, P. and Manickasundram, P. (2001)
Conclusion

There is little information about fertigation management in tuber crop. So, it is quite clear from the foregoing literature that it is not only efficient in tuber crop, it also very efficient to vegetable, fruit ant forest tree crops. Fertigation had many advantages like higher WUE(water use efficiency) and FUE(fertilizer use efficiency), minimum losses of N, optimization use of the nutrient balance by suppling nutrients directly to root zone, control of nutrient concentration in soil solution and saves application cost. It increases the yield and economics of most of the high value tuber crops under drip irrigation. High initial investment and comparatively low technical skill of average Indian farmers are some of the major constraints limiting the large scale adoption as drip fertigation technology in the country. However, increasing water scarcity and value crops and green houses to ensure higher escalating fertilizer prices may lead to greater efficiency of the two most critical inputs in crop adoption of the technology especially in high production. We should be conscious about that 'per drop more crop.'

References:

Goyal, M.R. et al. (1985). In: Proc. 3n1 International Congress on Drip Irrigation, November 18-21, Fresh No., California, USA.

